EJERCICIOS

1. Dibuje y comente las diferencias entre una señal analógica y una señal digital


Señal Analógica

Una señal analógica es un voltaje o corriente que varía suave y continuamente. Una onda senoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el sonido o variaciones de la luz que corresponden a la información que se está transmitiendo.

Señal Digital

Las señales digitales, en contraste con las señales analógicas, no varían en forma continua, sino que cambian en pasos o en incrementos discretos. La mayoría de las señales digitales utilizan códigos binarios o de dos estados.


2. Cite ejemplos de dispositivos de comunicaciones que tomen como base la
concentración o la multiplexación para efectuar sus operaciones de transmisión.



Ejemplo:
El espectro asignado es sobre IMHz, aproximadamente 500 a 1500 KILOHERCIOS. Diferente (estaciones, cada funcionamiento en una parte del espectro. Con la separación de intercanal bastante grande prevenir interferencia. Este sistema es un ejemplo de multiplexación por división de frecuencia.
Ventajas de FDM
1. Aquí el usuario puede ser añadido al sistema por simplemente añadiendo otro par de modulador de transmisor y receptor domodulators.
2. El sistema de FDM apoya el flujo de dúplex total de información que es requerido por la mayor parte de la aplicación.
3. El problema del ruido para la comunicación análoga tiene menos el efecto.
Desventajas de FDM
1. En el sistema FDM, el coste inicial es alto. Este puede incluir el cable entre los dos finales y los conectors asociados para el cable.
2. En el sistema FDM, un problema para un usuario puede afectar a veces a otros.
3. En el sistema FDM, cada usuario requiere una frecuencia de portador precisa.
La Multiplexión de División de Tiempo (TDM) es otro método popular de utilizar la capacidad de un canal físico con eficacia. Cada usuario del canal es asignado un pequeño intervalo de tiempo durante el cual es puede transmitir un mensaje. Así el tiempo total disponible en el canal es dividido y cada usuario es asignado una rebanada de tiempo. En TDM, el usuario envia el mensaje secuencialmente uno tras otro. Cada usuario puede usar, sin embargo, la anchura de banda de canal llena durante el período él tiene el control del canal. La capacidad de canal es totalmente utilizada en TDM intercalando varios mensajes que pertenecen a usuarios diferentes en un mensaje largo. Este mensaje enviado por el canal físico debe ser separado al final de recepción. Los cachos individuales del mensaje enviado por cada usuario deberían ser vueltos a montar en un mensaje lleno como mostrado
Lamentablemente, TDM sólo puede ser usado para la multiplexión de datos digital. Ya que los bucles locales producen señales análogas, una conversión es necesaria del análogo a digital en la central final. Donde todos los bucles locales individuales vienen juntos para ser combinado en camiones salientes.
Ejemplo:
En algunos países, las estaciones individuales tienen dos canales de suscripción lógicos: música y publicidad. Este dos suplente a tiempo en la misma frecuencia primero un estallido de la música, luego un estallido de publicidad, entonces más música etcétera. Esta situación es la multiplexión de división de tiempo.
Ventajas de TDM
1. Esto usa unos enlaces solos
2. Esto no requiere al portador preciso que empareja a ambo final de los enlaces.
3. El uso de la capacidad es alto.
4. Cada uno para ampliar el número de usuarios en un sistema en un coste bajo.
5. No hay ninguna necesidad de incluir la identificación de la corriente de tráfico en cada paquete.
Desventajas de TDM
1. La sensibilidad frente a otro problema de usuario es alta
2. El coste inicial es alto
3. La complejidad técnica es más
4. El problema del ruido para la comunicación análoga tiene el mayor efecto.



3. Confeccione un esquema con las características técnicas de cada medio de
transmisión


Resistencia:
• Todo conductor, aislante o material opone una cierta resistencia al flujo de la corriente eléctrica.
• Un determinado voltaje es necesario para vencer la resistencia y forzar el flujo de corriente. Cuando esto ocurre, el flujo de corriente a través del medio produce calor.
• La cantidad de calor generado se llama potencia y se mide en WATTS. Esta energía se pierde.
• La resistencia de los alambres depende de varios factores.
*Material o Metal que se usó en su construcción


*Alambres de acero, que podrían ser necesarios debido a altas fuerza de tensión, pierden muchas más potencia que conductores de cobre en las mismas dimensiones.
*El diámetro y el largo del material también afectan la perdida de potencia.
• A medida que aumenta la frecuencia de la señal aplicada a un alambre, la corriente tiende a fluir mas cerca de la superficie, alejándose del centro de conductor.
• Usando conductores de pequeños diámetro, la resistencia efectiva del medio aumenta, a medida que aumenta la frecuencia. Este fenómeno es llamado "efecto piel" y es importante en las redes de transmisión.
• La resistividad usualmente se mide en “ohms” (Ω) por unidad de longitud.



4. Un canal sin ruido de 4 kHz se muestrea cada 1 mseg, cuál es la tasa de datos
máxima?


5. Si se envía una señal binaria por un canal de 3 kHz cuya relación de señal a ruido
es de 20 dB, cuál es la tasa de datos máxima que se puede obtener?

6. Qué es el teorema de Nyquist?

El teorema trata con el muestreo, que no debe ser confundido o asociado con la cuantificación, proceso que sigue al de muestreo en la digitalización de una señal y que, al contrario del muestreo, no es reversible (se produce una pérdida de información en el proceso de cuantificación, incluso en el caso ideal teórico, que se traduce en una distorsión conocida como error o ruido de cuantificación y que establece un límite teórico superior a la relación señal-ruido). Dicho de otro modo, desde el punto de vista del teorema, las muestras discretas de una señal son valores exactos que aún no han sufrido redondeo o truncamiento alguno sobre una precisión determinada, esto es, aún no han sido cuantificadas.
El teorema demuestra que la reconstrucción exacta de una señal periódica continua en banda base a partir de sus muestras es matemáticamente posible si la señal está limitada en banda y la tasa de muestreo es superior al doble de su ancho de banda.
Dicho de otro modo, la información completa de la señal analógica original que cumple el criterio anterior está descrita por la serie total de muestras que resultaron del proceso de muestreo. No hay nada, por tanto, de la evolución de la señal entre muestras que no esté perfectamente definido por la serie total de muestras.


7. Se cumple el teorema de Nyquist para la fibra óptica o solamente para el alambre
de cobre?

8. Qué técnica de transmisión transmite señales analógicas?


Técnicas de codificación

Para transmitir datos digitales mediante señales analógicas es necesario convertir estos datos a un formato analógico. Para esto existen varias técnicas.
1. Desplazamiento de amplitud (ASK): los dos valores binarios se representan por dos valores de amplitud de la portadora, por ejemplo s(t)=A x Cos (2 x pi x f x t) simboliza el 1 y s(t)= 0 simboliza el 0. Aunque este método es muy sensible a cambios repentinos de la ganancia, es muy utilizado en fibras ópticas (1 es presencia de luz y 0 es ausencia de luz).
2. Desplazamiento de frecuencia (FSK): en este caso, los dos valores binarios se representan por dos frecuencias próximas a la portadora. Este método es menos sensible a errores que ASK y se utiliza para mayores velocidades de transmisión que ASK, para transmisiones de teléfono a altas frecuencias y para LAN's con cables coaxiales.
3. Desplazamiento de fase (PSK): en este caso es la fase de la portadora la que se desplaza. Un 0 se representa como una señal con igual fase que la señal anterior y un 1 como una señal con fase opuesta a la anteriormente enviada. Utilizando varios ángulos de fase, uno para cada tipo de señal, es posible codificar más bits con iguales elementos de señal.

9. Cómo se denomina al compartir un medio y su enlace por dos o más dispositivos?

10. Cuál es el propósito principal de la multiplexación?

La Multiplexación es el conjunto de técnicas que permite la transmisión simultanea de múltiples señales a través de un único enlace de datos

11. Qué técnica de multiplexación transmite señales digitales?


Multiplexación por División en Frecuencia (MDF)
La multiplexación por división en frecuencia es una técnica que consiste en dividir mediante filtros el espectro de frecuencias del canal de transmisión y desplazar la señal a transmitir dentro del margen del espectro correspondiente mediante modulaciones, de tal forma que cada usuario tiene posesión exclusiva de su banda de frecuencias (llamadas subcanales).
En el extremo de la línea, el multiplexor encargado de recibir los datos realiza la demodulación la señal, obteniendo separadamente cada uno de los subcanales. Esta operación se realiza de manera transparente a los usuarios de la línea. Se emplea este tipo de multiplexación para usuarios telefónicos, radio, TV que requieren el uso continuo del canal.

Este proceso es posible cuando la anchura de banda del medio de transmisión excede de la anchura de banda de las señales a transmitir. Se pueden transmitir varias señales simultáneamente si cada una se modula con una portadora de frecuencia diferente, y las frecuencias de las portadoras están lo suficientemente separadas como para que no se produzcan interferencias. Cada subcanal se separa por unas bandas de guarda para prevenir posibles interferencias por solapamiento.
La señal que se transmite a través del medio es analógica, aunque las señales de entrada pueden ser analógicas o digitales. En el primer caso se utilizan las modulaciones AM, FM y PM para producir una señal analógica centrada en la frecuencia deseada. En el caso de señales digitales se utilizan ASK, FSK, PSK y DPSK.
En el extremo receptor, la señal compuesta se pasa a través de filtros, cada uno centrado en una de las diferentes portadoras. De este modo la señal se divide otra vez y cada componente se demodula para recuperar la señal.
La técnica de MDF presenta cierto grado de normalización. Una norma de gran uso es la correspondiente a 12 canales de voz, cada uno de 4.000 Hz (3.100 para el usuario y el resto para la banda de guarda) multiplexado en la banda de 60-108 Khz. A esta unidad se le llama grupo. Muchos proveedores de servicios portadores ofrecen a sus clientes una línea alquilada de 48 a 56 Kbps, basada en un grupo.
Se pueden multiplexar cinco grupos (60 canales de voz) para formar un supergrupo. La siguiente unidad es el grupo maestro, que está constituido por cinco supergrupos (de acuerdo con las normas del UIT) o por diez grupos (de acuerdo a Bell System).
Multiplexación por División en el Tiempo (MTC)
La multiplexación por división de tiempo es una técnica para compartir un canal de transmisión entre varios usuarios. Consiste en asignar a cada usuario, durante unas determinadas "ranuras de tiempo", la totalidad del ancho de banda disponible. Esto se logra organizando el mensaje de salida en unidades de información llamadas tramas, y asignando intervalos de tiempo fijos dentro de la trama a cada canal de entrada. De esta forma, el primer canal de la trama corresponde a la primera comunicación, el segundo a la segunda, y así sucesivamente, hasta que el n-esimo más uno vuelva a corresponder a la primera.
El uso de esta técnica es posible cuando la tasa de los datos del medio de transmisión excede de la tasa de las señales digitales a transmitir. El multiplexor por división en el tiempo muestrea, o explora, cíclicamente las señales de entrada (datos de entrada) de los diferentes usuarios, y transmite las tramas a través de una única línea de comunicación de alta velocidad. Los MDT son dispositivos de señal discreta y no pueden aceptar datos analógicos directamente, sino demodulados mediante un módem.
Los MDT funcionan a nivel de bit o a nivel de carácter. En un MDT a nivel de bit, cada trama contiene un bit de cada dispositivo explorado. El MDT de caracteres manda un carácter en cada canal de la trama. El segundo es generalmente más eficiente, dado que requiere menos bits de control que un MDT de bit. La operación de muestreo debe ser lo suficientemente rápida, de forma que cada buffer sea vaciado antes de que lleguen nuevos datos.

Los sistemas MIC, sistema de codificación digital, utilizan la técnica MDT para cubrir la capacidad de los medios de transmisión. La ley de formación de los sucesivos órdenes de multiplexación responde a normalizaciones de carácter internacional, con vista a facilitar las conexiones entre diversos países y la compatibilidad entre equipos procedentes de distintos fabricantes.
El UIT/UIT recomienda, como primer escalón de la jerarquía de multiplexación por división en el tiempo, 24 ó 32 (30 + 2) canales telefónicos, sistemas utilizados en Estados Unidos y Japón el primero y en Europa, el segundo. Según la recomendación G-732 del UIT, el sistema MIC primario europeo multiplexa a nivel de muestra 30 canales de voz, además de un canal de alineación y otro de señalización, formando una trama de 256 bits (32 canales, una muestra por canal y 8 bits por muestra) a una frecuencia de 8 Khz (doble ancho de banda que el canal telefónico), de lo que resulta una velocidad de 2.048 kbps.
En los equipos múltiplex MIC secundario, terciario, etc., se lleva a cabo una multiplexación en el tiempo (MDT) por entrelazado de impulsos (bit a bit) a diferencia de los equipos MIC primarios.
El UIT ha recomendado cuatro jerarquías de multiplexación para equipos MIC. El equipo múltiplex digital que combina las señales de salida de cuatro equipos múltiplex primarios MIC se denomina equipo múltiplex digital de segundo orden. Los equipos múltiplex digitales de tercer orden combinarían las señales de salida de cuatro equipos múltiplex de segundo orden, etc.
Así, el segundo nivel de multiplexación acepta cuatro señales digitales a 2.048 kbps para formar una señal a 8.448 kbps. El tercer nivel agrupa cuatro señales de 8.448 kbps en una de 34.368 kbps. El cuarto nivel agrupa cuatro señales de nivel tres en una señal de 13.9264 kbps. Por último, en la misma proporción, el quinto nivel produce una señal de 565 Mbps.
Multiplexación estadística
En situaciones reales, ningún canal de comunicaciones permanece continuamente transmitiendo, de forma que, si se reserva automáticamente una porción del tiempo de transmisión para cada canal, existirán momentos en los que, a falta de datos del canal correspondiente, no se transmita nada y, en cambio, otros canales esperen innecesariamente. La idea de esta multiplexación consiste en transmitir los datos de aquellos canales que, en cada instante, tengan información para transmitir.
Los multiplexores MDT estadísticos (MDTE) asignan dinámicamente los intervalos de tiempo entre los terminales activos y, por tanto, no se desaprovecha la capacidad de la línea durante los tiempos de inactividad de los terminales.

El funcionamiento de estos multiplexores permite que la suma de las velocidades de los canales de entrada supere la velocidad del canal de salida. Si en un momento todos los canales de entrada tienen información, el tráfico global no podrá ser transmitido y el multiplexor necesitará almacenar parte de esta información.
Los multiplexores estadísticos han evolucionado en un corto período de tiempo convirtiéndose en máquinas muy potentes y flexibles. Han acaparado prácticamente el mercado de la MDT y constituyen actualmente una seria competencia a los MDF. Estos proporcionan técnicas de control de errores y control del flujo de datos. Algunos proporcionan la circuitería de modulación para realizar la interfaz con redes analógicas.
De otra forma, sería necesario usar módem separados. El control de flujo se emplea para prevenir el hecho de que los dispositivos puedan enviar datos a un ritmo excesivo a las memorias tampón buffer de los multiplexores.


12. Qué tipo de multiplexación tiene múltiples caminos?

13. Cómo deben ser las conexiones entre los abonados para servicios dedicados?

14. Tienen nivel físico las redes inalámbricas?

si hay un nivel de medios fisicos que hacen posible la conexion de dispositivos inalambricos como es el caso de los infrarrojos o blutoo

No hay comentarios: